интерполяцией.

8.12 Коэффициент надежности по эксплуатационному расчетному значению снеговой нагрузки γ_{fe} определяется по табл. 8.3 в зависимости от доли времени η , на протяжении которой могут нарушаться условия второго предельного состояния.

Таблица 8.3

η	0,002	0,005	0,01	0,02	0,03	0,04	0,05	0,1
γ_{fe}	0,88	0,74	0,62	0,49	0,40	0,34	0,28	0,10

Промежуточные значения коэффициента γ_{fe} следует определять линейной интерполяцией.

Значение η принимается по нормам проектирования конструкций или устанавливается заданием на проектирование в зависимости от их назначения, ответственности и следствий выхода за предельное состояние. Для объектов массового строительства допускается принимать $\eta=0.02$.

9 ВЕТРОВЫЕ НАГРУЗКИ

9.1 Требования раздела 9 распространяются на здания и сооружения простой геометрической формы, высота которых не превышает 200 метров.

При определении ветровой нагрузки для зданий и сооружений сложной конструктивной или геометрической формы (содержащих вантовые и висячие покрытия, оболочки, антенные полотна), стальных решетчатых мачт и башен и др., а также для зданий и сооружений высотой более 200 метров следует выполнять специальные динамические расчеты для определения влияния пульсационной составляющей нагрузки, а в необходимых случаях – обдувку моделей в аэродинамической трубе.

- **9.2** Ветровая нагрузка является переменной нагрузкой, для которой установлены два расчетных значения:
 - предельное расчетное значение;
 - эксплуатационное расчетное значение.
 - 9.3 Ветровую нагрузку на сооружение следует рассматривать как совокупность:
- а) нормального давления, приложенного к внешней поверхности сооружения или элемента;
- б) сил трения, направленных по касательной к внешней поверхности и отнесенных к площади ее горизонтальной (для шедовых или волнистых покрытий, покрытий с фонарями) или вертикальной (для стен с лоджиями и подобных конструкций) проекции;
- в) нормального давления, приложенного ко внутренним поверхностям зданий с воздухопроницаемыми ограждениями, с открывающимися или постоянно открытыми проемами.

Совокупность указанных сил может быть представлена в форме нормального давления, обусловленного общим сопротивлением сооружения в направлении осей x и y, и условно приложенного к проекции сооружения на плоскость, перпендикулярную соответствующей оси.

9.4 Предельное расчетное значение ветровой нагрузки определяется по формуле

$$W_m = \gamma_{fm} W_0 C, \qquad (9.1)$$

С. 26 ДБН В.1.2-2:2006

где $\gamma_{\it fm}$ — коэффициент надежности по предельному значению ветровой нагрузки, определяемый по 9.14;

 W_0 – характеристическое значение ветрового давления по 9.6;

C – коэффициент, определяемый по 9.7.

9.5 Эксплуатационное расчетное значение ветровой нагрузки определяется по формуле

$$W_e = \gamma_{fe} W_0 C, \qquad (9.2)$$

где γ_{fe} — коэффициент надежности по эксплуатационному значению ветровой нагрузки, определяемый по 9.15.

9.6 Характеристическое значение ветрового давления W_0 равно средней (статической) составляющей давления ветра на высоте 10 м над поверхностью земли, которое может быть превышен в среднем один раз в 50 лет.

Характеристическое значение ветрового давления W_0 определяется в зависимости от ветрового района по карте (рис. 9.1) или по приложению Е.

B необходимых случаях W_0 допускается определять путем статистической обработки результатов срочных замеров скорости ветра.

9.7 Коэффициент C определяется по формуле

$$C = C_{aer} C_h C_{alt} C_{rel} C_d, \tag{9.3}$$

где C_{aer} — аэродинамический коэффициент, определяемый по 9.8;

 C_h - коэффициент высоты сооружения, определяемый по 9.9;

 C_{alt} - коэффициент географической высоты, определяемый по 9.10;

 C_{rel} - коэффициент рельефа, определяемый по 9.11;

 C_{dir} - коэффициент направления, определяемый по 9.12;

 C_d - коэффициент динамичности, определяемый по 9.13.

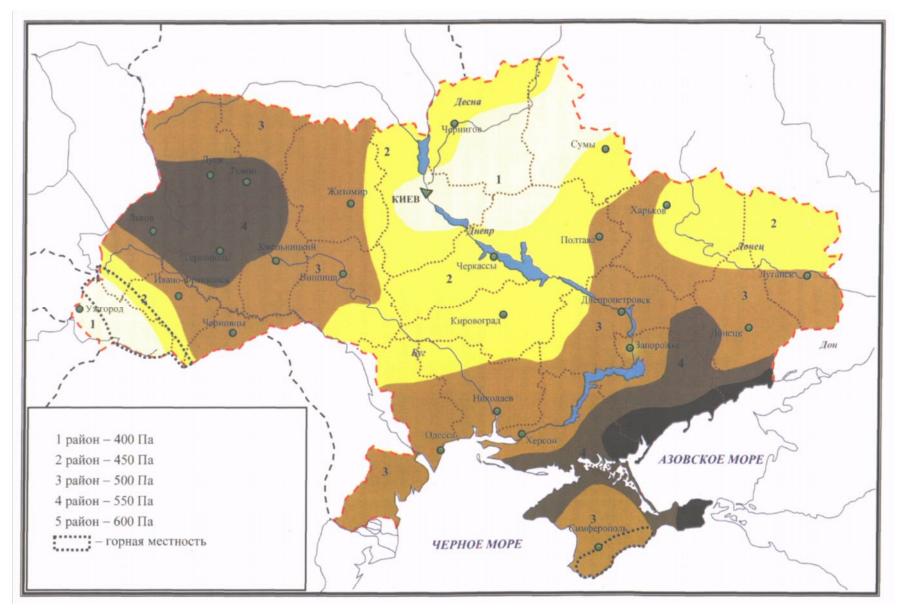


Рисунок 9.1. Карта районирования территории Украины по характеристическим значениям ветрового давления

- **9.8** Аэродинамические коэффициенты C_{aer} определяются по приложению И в зависимости от формы сооружения или конструктивного элемента и могут иметь вид:
- коэффициентов C_e , которые следует учитывать при определении ветрового давления, приложенного нормально к внешним поверхностям сооружения или элемента и отнесенных к единице площади этой поверхности;
- коэффициентов трения C_f , которые следует учитывать при определении сил трения, направленных по касательной к внешней поверхности здания или сооружения и отнесенных к площади ее горизонтальной или вертикальной проекции;
- коэффициентов C_i , которые следует учитывать при определении ветрового давления, приложенного нормально к внутренним поверхностям зданий с проницаемыми ограждениями, с открывающимися или постоянно открытыми проемами;
- коэффициентов лобового сопротивления C_x , которые следует учитывать для отдельных элементов и конструкций при определении составляющей общего сопротивления тела, действующей по направлению ветрового потока и относящейся к площади проекции тела на плоскость, перпендикулярную потоку;
- коэффициентов поперечной силы C_y , которые следует учитывать для отдельных элементов и конструкций при определении составляющей общего сопротивления тела, действующей в направлении, перпендикулярном ветровому потоку и относящейся к площади проекции тела на плоскость потока.

Аэродинамические коэффициенты C_{aer} приведены в приложении И, где стрелками указано направление ветра. Знак «плюс» у коэффициентов соответствует направлению давления ветра на поверхность, знак «минус» – от поверхности. Промежуточные значения коэффициентов следует определять линейной интерполяцией.

В случаях, не предусмотренных приложением И (иные формы сооружений, учет при надлежащем обосновании других направлений ветрового потока или составляющих общего сопротивления тела по другим направлениям и т.п.), аэродинамические коэффициенты допускается принимать по справочным и экспериментальным данным или на основе результатов продувок моделей конструкций в аэродинамических трубах.

9.9 Коэффициент высоты сооружения C_h учитывает увеличение ветровой нагрузки в зависимости от высоты конструкции или рассматриваемой ее части над поверхностью земли (Z), типа окружающей местности и определяется по рис. 9.2.

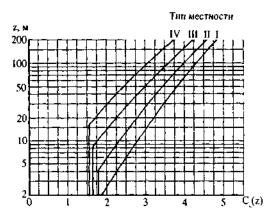


Рисунок 9.2. Коэффициент высоты сооружения C_h

Типы местности, окружающей здание или сооружение, определяются для каждого расчетного направления ветра в отдельности:

I - открытые поверхности морей, озер, а также плоские равнины без препятствий,

подвергающиеся действию ветра на участке длиной не менее 3 км;

- II сельская местность с оградами (заборами), небольшими сооружениями, домами и деревьями;
 - III пригородные и промышленные зоны, протяженные лесные массивы;
- IV городские территории, на которых по крайней мере 15% поверхности заняты зданиями, имеющими среднюю высоту более 15 м.

При определении типа местности сооружение считается расположенным на местности данного типа для определенного расчетного направления ветра, если в рассматриваемом направлении такая местность имеется на расстоянии 30Z при полной высоте сооружения Z<60 м или 2 км — при большей высоте.

B случае, если сооружение расположено на границе местностей различных типов либо имеются сомнения относительно выбора типа местности, следует принимать тип местности, доставляющий большие значения коэффициента C_h .

9.10 Коэффициент географической высоты C_{alb} учитывает высоту H (в километрах) размещения строительного объекта над уровнем моря и определяется по формуле

$$C_{alt} = 4H - 1 \ (H > 0.5 \ \text{KM}); C_{alt} = 1 \ (H < 0.5 \ \text{KM}).$$
 (9.4)

Формула (9.4) используется для объектов, расположенных в горной местности, и дает ориентировочное значение в запас надежности. При наличии результатов метеорологических наблюдений за ветром, проведенных в зоне строительной площадки, характеристическое значение ветровой нагрузки определяется путем статистической обработки результатов срочных замеров скоростей ветра и при этом принимается C_{alt} =1.

9.11 Коэффициент рельефа C_{rel} учитывает микрорельеф местности вблизи площадки, на которой расположен строительный объект, и принимается равным единице, за исключением случаев, когда объект строительства расположен на холме или склоне.

Коэффициент рельефа следует учитывать в том случае, когда сооружение расположено на холме или склоне на расстоянии от начала склона не менее, чем половина длины склона или полторы высоты холма.

Коэффициент рельефа C_{rel} определяется по формулам

$$C_{rel}=1$$
 при $\varphi<0.05$; $C_{rel}=1+2S\varphi$ при $0.05<\varphi<0.3$; $C_{rel}=1+0.6$ при $\varphi>0.3$. (9.5)

В формулах (9.5) обозначено:

 φ — уклон с заветренной стороны;

S – коэффициент, определяемый по рис. 9.3 для склонов и по рис. 9.4 для холмов.

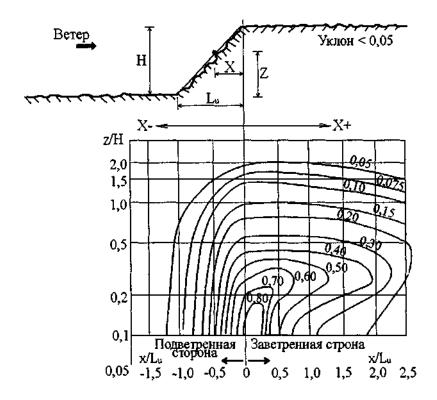


Рисунок 9.3. Коэффициент S для склонов

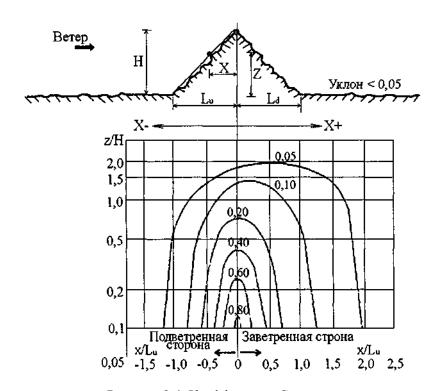


Рисунок 9.4. Коэффициент S для холмов

На рис. 9.3 и 9.4 обозначено:

 φ - уклон H/L с заветренной стороны;

 L_u - проекция длины подветренного склона на горизонталь;

 L_d - проекция длины заветренного склона на горизонталь;

H - высота холма или склона;

- расстояние по горизонтали от сооружения до вершины;
- Z расстояние по вертикали от поверхности земли до сооружения;
- L_e эффективная длина подветренного склона (L_e =L при 0,05< φ <0,3; L_e =3,3H при φ >0,3).
- **9.12** Коэффициент направления C_{dir} учитывает неравномерность ветровой нагрузки по направлениям ветра и, как правило, принимается равным единице. Значение C_{dir} отличное от единицы, допускается учитывать при специальном обосновании только для открытой равнинной местности и при наличии достаточных статистических данных.
- **9.13** Коэффициент динамичности C_d учитывает влияние пульсационной составляющей ветровой нагрузки и пространственную корреляцию ветрового давления на сооружение.

Для основных типов зданий и сооружений значения C_d определяются по графикам на рис. 9.5-9.10. Указанные на рисунках ширина и диаметр приняты в сечении, перпендикулярном ветровому потоку. Значения C_d следует принимать по левой кривой соответствующего графика.

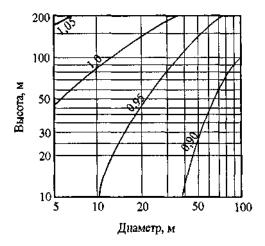


Рисунок 9.5 Коэффициент C_d для каменных зданий и зданий с железобетонным каркасом

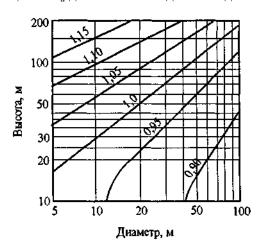


Рисунок 9.6. Коэффициент C_d для зданий со стальным каркасом

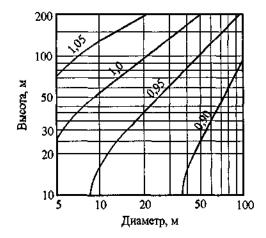


Рисунок 9.7. Коэффициент C_d для зданий со сталебетонным каркасом

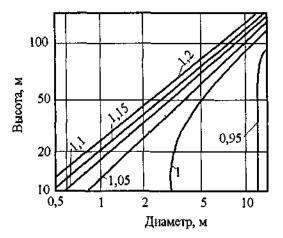


Рисунок 9.8. Коэффициент C_d для стальных труб и аппаратов колонного типа без футеровки

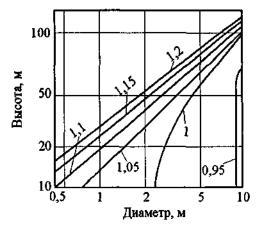


Рисунок 9.9. Коэффициент C_d для стальных труб и аппаратов колонного типа с футеровкой

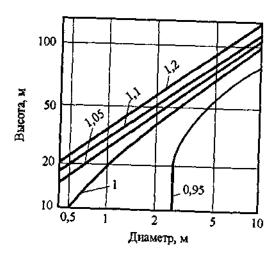


Рисунок 9.10. Коэффициент C_d для железобетонных труб

В случаях, когда $C_d > 1,2$, необходимо выполнять специальный динамический расчет, с помощью которого определяется влияние пульсационной составляющей ветровой нагрузки.

Значения $C_d < 1,0$ учитывают малую вероятность одновременного возрастания пульсационного давления во всех точках сооружения.

Для проверки прочности ограждающих конструкций, подвергающихся непосредственному действию ветра и имеющих площадь менее $36\,\mathrm{m}^2$, следует принимать $C_d \ge 1,0$.

9.14 Коэффициент надежности по предельному расчетному значению ветровой нагрузки $\gamma_{\it fm}$ определяется в зависимости от заданного среднего периода повторяемости T по табл. 9.1.

Таблица 9.1

Т, лет	5	10	15	25	40	50	70	100	150	200	300	500
$\gamma_{_{fm}}$	0,55	0,69	0,77	0,87	0,96	1,00	1,07	1,14	1,22	1,28	1,35	1,45

Промежуточные значения коэффициента $\gamma_{\it fm}$ следует определять линейной интерполяцией.

Для объектов массового строительства допускается средний период повторяемости T принимать равным установленному сроку эксплуатации конструкции T_{ef}

Для объектов повышенного уровня ответственности, для которых техническим заданием установлена вероятность P непревышения (обеспеченность) предельного расчетного значения ветровой нагрузки на протяжении установленного срока службы, средний период повторяемости предельного расчетного значения ветровой нагрузки вычисляется по формуле

$$T = T_{ef}K_p, (9.6)$$

где K_p – коэффициент, определяемый по табл. 9.2 в зависимости от вероятности P.

Таблица 9.2

P	0,37	0,5	0,6	0,8	0,85	0,9	0,95	0,99
K_p	1,00	1,44	1,95	4,48	6,15	9,50	19,50	99,50

Промежуточные значения коэффициента K_p следует определять линейной интерполяцией.

9.15 Коэффициент надежности по эксплуатационному расчетному значению ветровой нагрузки γ_{fe} определяется по табл. 9.3 в зависимости от доли времени η , на протяжении которой могут нарушаться условия второго предельного состояния.

Таблица 9.3

γ_{fe}	0,002	0,005	0,01	0,02	0,03	0,04	0,05	0,1
η	0,42	0,33	0,27	0,21	0,18	0,16	0,14	0,09

Промежуточные значения коэффициента γ_{fe} следует определять линейной интерполяцией.

Значение η принимается по нормам проектирования конструкций или устанавливается заданием на проектирование в зависимости от их назначения, ответственности и следствий выхода за предельное состояние. Для объектов массового строительства допускается принимать $\eta=0{,}02$.

9.16 При расчете креплений элементов ограждения к несущим конструкциям в углах здания и по внешнему контуру покрытия следует учитывать местное отрицательное давление ветра с аэродинамическим коэффициентом $C_{aer} = -2$, распределенное вдоль поверхностей на ширине 1,5 м (рис. 9.11).

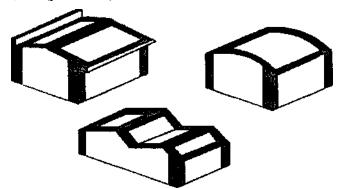


Рисунок 9.11. Участки с повышенным отрицательным давлением ветра

9.17 При проектировании высоких сооружений, относительные размеры которых удовлетворяют условию h/d > 7, необходимо дополнительно производить поверочный расчет на вихревое возбуждение (ветровой резонанс); здесь h – высота сооружения, d – минимальный размер поперечного сечения, расположенного на уровне 2/3h.

10 ГОЛОЛЕДНО-ВЕТРОВЫЕ НАГРУЗКИ

- **10.1**Гололедно-ветровые нагрузки следует учитывать при проектировании воздушных линий связи, контактных сетей электрифицированного транспорта, антенно-мачтовых устройств и других подобных сооружений.
- **10.2**Гололедно-ветровые нагрузки следует учитывать как совокупность веса гололедных отложений и нормального давления ветра на покрытые гололедом элементы.
- **10.3**Гололедно-ветровые нагрузки являются эпизодическими, для каждой составляющей которых (гололедных отложений и ветра) установлены предельные расчетные значения.
- 10.4Предельное расчетное значение веса гололедных отложений определяется по формуле

$$G_m = G_e \gamma_{fw}, \tag{10.1}$$

Приложение Б (справочное)

ПОЯСНЕНИЯ ОСНОВНЫХ ПОНЯТИЙ. ОБОЗНАЧЕНИЯ

Долговечность — свойство объекта выполнять требуемые функции до момента наступления предельного состояния при установленной системе обслуживания и ремонта.

Нагрузочный эффект (по ГОСТ 27751) – усилия, напряжения, деформации, раскрытия трещин, вызываемые силовыми воздействиями.

Предельное состояние (по ГОСТ 27751) — состояние, при котором конструкция, основание (здание или сооружение в целом) перестают удовлетворять заданным эксплуатационным требованиям или требования при производстве работ (возведении).

Расчетная ситуация — учитываемый в расчете комплекс условий, определяющий расчетные требования к конструкциям. Расчетная ситуация характеризуется расчетной схемой конструкции, видами нагрузок, значениями коэффициентов условий работы и коэффициентами надежности, перечнем предельных состояний, которые следует рассматривать в данной ситуации.

Силовое воздействие (по ГОСТ 27751) – воздействие, под которым понимаются как непосредственные силовые воздействия от нагрузок, так и воздействия от смещения опор, изменения температуры, усадки и других подобных явлений, вызывающих реактивные силы.

Основная нагрузка – нагрузка, которая появляется в результате природных явлений или человеческой деятельности.

Постоянная нагрузка (постоянная нагрузка по 1.4 СНиП 2.01.07-85) — нагрузка, которая действует практически не изменяясь в течение всего срока службы сооружения и для которой можно пренебрегать изменением ее значений во времени относительно среднего.

Переменная нагрузка (временная нагрузка по 1.4 СНиП 2.01.07-85) — нагрузка, для которой нельзя пренебрегать изменением ее значения во времени относительно среднего.

Длительная нагрузка (длительная нагрузка по 1.4 СНиП 2.01.07-85) — переменная нагрузка, длительность действия которой близка к установленному сроку эксплуатации конструкции T_{ef} .

Кратковременная нагрузка (кратковременная нагрузка по 1.4 СНиП 2.01.07-85) — переменная нагрузка, которая реализуются много раз в течение срока службы сооружения и для которой длительность действия намного меньше T_{ef} :

Эпизодическая нагрузка (особая нагрузка по 1.4 СНиП 2.01.07-85) — нагрузка, которая реализуется чрезвычайно редко (один или несколько раз в течение срока службы сооружения) и длительность действия которой ограничивается малым сроком. Как правило, эпизодическими являются аварийные нагрузки и воздействия.

Характеристическое значение нагрузки (нормативная нагрузка с полным значением по 1.2 СНиП 2.01.07-85) — основное значение нагрузки, установленное в настоящих нормах.

Предельное расчетное значение нагрузки (расчетная нагрузка по 1.3а СНиП 2.01.07-85) —значение нагрузки, соответствующее экстремальной ситуации, которая может возникнуть не более одного раза в течение срока эксплуатации конструкции, и используется для проверки предельных состояний первой группы, выход за границы которых эквивалентен полной уграте работоспособности конструкции.

С. 46 ДБН В.1.2-2:2006

Эксплуатационное расчетное значение нагрузки (расчетная нагрузка по 1.3в СНиП 2.01.07-85) — значение нагрузки, которое характеризует условия нормальной эксплуатации конструкции. Как правило, эксплуатационное расчетное значение используется для проверки предельных состояний второй группы, связанных с затруднением нормальной эксплуатации (возникновение недопустимых перемещений конструкции, недопустимая вибрация, чрезмерное раскрытие трещин в железобетонных конструкциях и т.п.).

Циклическое расчетное значение нагрузки — значение нагрузки, которое используется для расчетов конструкций на выносливость и определяется в форме гармонического процесса, эквивалентного по результатам влияния на конструкцию реальному случайному процессу переменного нагружения.

Квазипостоянное расчетное значение нагрузки (нормативная нагрузка с пониженным значением по 1.2 СНиП 2.01.07-85) — расчетное значение нагрузки, которое используется для учета реологических процессов, протекающих под действием переменных нагрузок, и определяется как уровень такого постоянного воздействия, которое эквивалентно по результирующему действию фактическому случайному процессу нагружения.

Основные сочетания нагрузок (основные сочетания по l.lla СНиП 2.01.07-85) – сочетания нагрузок или соответствующих им усилий и/или перемещений для проверки конструкций в установившихся и переходных расчетных ситуациях.

Аварийные сочетания нагрузок (особые сочетания по 1.116 СНиП 2.01.07-85) — сочетания нагрузок или соответствующих им усилий и/или перемещений для проверки конструкций в аварийных расчетных ситуациях.

Установленный срок эксплуатации конструкции T_{ef} — расчетный срок функционирования объекта, определяемый при проектировании.

Периодичность превышения требований жесткости T_n – срок, в течение которого в среднем один раз можно нарушить условия второго предельного состояния.

Коэффициент η — относительное время, в течение которого может быть допущено нарушение требований второго предельного состояния. Например, для некоторых объектов в течение 2% времени эксплуатации может быть допущено превышение прогибов, нормируемых из технологических соображений.

Приложение В (справочное)

ПРИМЕРНЫЕ СРОКИ ЭКСПЛУАТАЦИИ ЗДАНИЙ И СООРУЖЕНИЙ (в годах)

Здания: 100 жилые и общественные производственные и вспомогательные 60 60 складские сельскохозяйственные 50 20 мобильные сборно-разборные 15 мобильные контейнерные Инженерные сооружения: резервуары для воды 80 резервуары для нефти и нефтепродуктов 40 резервуары для химической промышленности 30 башни и мачты 40 30 дымовые трубы

краны-перегружатели

мостовые и козловые краны

Примечание. Приведенные значения не предназначены для начисления амортизационных отчислений или для других целей, отличных от оценки надежности.

25

20

Приложение E (справочное)

ХАРАКТЕРИСТИЧЕСКИЕ ЗНАЧЕНИЯ НАГРУЗОК И ВОЗДЕЙСТВИЙ ДЛЯ ГОРОДОВ УКРАИНЫ

 W_0 — ветровая нагрузка (в Паскалях)

 S_0 – снеговая нагрузка (в Паскалях)

B — толщина стенки гололеда (в мм)

 W_{B} – ветровая нагрузка при гололеде (в Паскалях)

F	W_{θ}	$S_{ heta}$	b	W_B
Города областного подчинения	(Па)	(Па)	(мм)	(Па)
Киев	370	1550	19	160
Севастополь	460	770	13	250
АР Крым				
Симферополь	460	820	15	210
Алушта	450	860	15	160
Джанкой	480	850	16	200
Евпатория	490	730	15	250
Керчь	540	920	16	310
Красноперекопск	510	780	16	260
Саки	480	760	15	230
Армянск	510	780	16	260
Феодосия	500	1000	14	240
Судак	470	940	15	160
Ялта	470	830	13	180
Винницкая область				
Винница	470	1360	17	220
Жмеринка	480	1360	19	240
Могилев-Подольский	470	1280	19	210
Хмельник	450	1390	18	210
Волынская область				
Луцк	480	1240	17	210
Владимир-Волынский	500	1200	17	160
Ковель	460	1200	13	160

Fanana of	W_0	$\mathcal{S}_{ heta}$	b	W_B
Города областного подчинения	(Па)	(Па)	(мм)	(Па)
Нововолынск	500	1240	15	170
Днепропетровская область				
Днепропетровск	470	1340	19	260
Вольногорск	440	1190	19	220
Днепродзержинск	470	1280	19	230
Желтые Воды	440	1170	19	260
Кривой Рог	440	1110	19	260
Марганец	460	1040	18	260
Никополь	460	1020	17	260
Новомосковск	470	1390	19	260
Орджоникидзе	460	1030	18	260
Павлоград	480	1390	17	260
Первомайск	500	1380	19	260
Синельниково	480	1350	19	260
Терновка	490	1390	18	260
Донецкая область				
Донецк	500	1500	22	260
Авдеевка	490	1450	22	230
Артемовск	480	1380	22	210
Горловка	500	1500	22	210
Дебальцево	500	1440	26	210
Дзержинск	500	1480	22	240
Димитров	480	1420	19	210
Доброполье	480	1410	19	210
Докучаевск	500	1520	23	300
Енакиево	500	1470	24	240
Ждановка	500	1160	19	250
Мариуполь	600	1380	28	350
Кировское	500	1490	25	240
Константиновка	480	1400	21	210
Краматорск	470	1400	21	210
Красноармейск	480	1410	19	230
Красный Лиман	460	1390	21	210
Макеевка	500	1490	23	240
Селидово	490	1420	20	250

С. 52 ДБН В.1.2-2:2006

Г	W_{θ}	$S_{ heta}$	b	W_B
Города областного подчинения	(Па)	(Па)	(мм)	(Па)
Славянск	460	1400	21	210
Снежное	490	1510	28	220
Торез	490	1520	27	220
Угледар	500	1450	22	300
Харцизск	500	1500	23	250
Шахтерск	500	1500	25	240
Ясиноватая	500	1470	22	250
Житомирская область				
Житомир	460	1460	16	200
Бердичев	460	1410	16	200
Коростень	480	1450	16	220
Новоград-Волынский	470	1380	22	220
Закарпатская область				
Ужгород	370	1340	11	150
Мукачево	370	1490	12	110
Запорожская область				
Запорожье	460	1110	19	260
Бердянск	520	1120	26	270
Мелитополь	520	1050	22	340
Токмак	490	1070	19	260
Ивано-Франковская область				
Ивано-Франковск	500	1410	21	170
Болехов	550	1520	17	170
Калуш	530	1440	19	180
Коломыя	490	1400	22	160
Яремча	470	1530	19	180
Киевская область				
Белая Церковь	390	1520	16	170
Березань	390	1580	19	190
Борисполь	380	1570	19	160
Бровары	380	1580	19	160
Васильков	380	1530	16	160
Ирпень	390	1560	19	160
Переяславль-Хмельницкий	390	1560	18	200
Припять	450	1590	19	190

Γουστο οξιτοσινότο ποιτινών	W_0	S_{θ}	b	W_B
Города областного подчинения	(Па)	(Па)	(мм)	(Па)
Фастов	380	1510	16	190
Ржищев	390	1540	18	190
Славутич	430	1600	18	190
Кировоградская область				
Кировоград	410	1230	22	210
Александрия	430	1250	21	240
Знаменка	420	1320	22	210
Светловодск	430	1310	18	210
Луганская область				
Луганск	460	1350	28	230
Антрацит	490	1460	30	240
Брянка	480	1410	25	230
Кировск	480	1400	23	220
Алчевск	480	1410	22	230
Краснодон	470	1410	29	230
Красный Луч	490	1470	29	230
Лисичанск	460	1370	21	210
Первомайск	480	1400	23	220
Ровеньки	480	1450	31	260
Рубежное	450	1370	21	180
Свердловск	480	1450	32	270
Северодонецк	460	1370	22	210
Стаханов	480	1400	24	220
Львовская область				
Львов	520	1310	15	240
Борислав	540	1500	16	180
Дрогобич	560	1440	16	190
Самбор	530	1400	16	190
Стрый	550	1420	16	180
Трускавец	550	1490	16	180
Червоноград	510	1260	16	230
Николаевская область				
Николаев	470	870	22	260
Вознесенск	450	990	22	270
Очаков	490	830	22	260

С. 54 ДБН В.1.2-2:2006

	W_0	$S_{ heta}$	b	W_B
Города областного подчинения	(Па)	(Па)	(мм)	(Па)
Первомайск	410	1200	22	260
Южноукраинск	430	1090	22	260
Одесская область				
Одесса	460	880	28	330
Белгород-Днестровский	470	890	27	330
Измаил	500	1100	23	310
Ильичевск	480	880	28	330
Котовск	450	1170	23	270
Южный	490	870	24	310
Полтавская область				
Полтава	470	1450	19	250
Комсомольск	430	1280	18	240
Кременчуг	430	1300	18	230
Лубны	410	1600	16	250
Миргород	420	1540	17	240
Ровенская область				
Ровно	520	1320	18	240
Дубно	530	1270	17	250
Кузнецовск	460	1260	13	200
Острог	520	1320	17	250
Сумская область				
Сумы	420	1670	16	250
Ахтырка	450	1600	17	240
Глухов	390	1770	17	230
Конотоп	360	1740	15	220
Лебедин	430	1640	18	220
Ромны	380	1730	19	230
Шостка	390	1790	16	220
Тернопольская область				
Тернополь	520	1390	17	230
Харьковская область				
Харьков	430	1600	14	230
Изюм	430	1460	19	210
Купянск	450	1460	19	210
Лозовая	480	1490	19	230

	W_0	S_{θ}	b	W_B
Города областного подчинения	(Па)	(Па)	(мм)	(Па)
Люботин	450	1570	15	250
Первомайский	450	1510	18	230
Чугуев	430	1600	15	220
Херсонская область				
Херсон	480	760	19	290
Каховка	460	840	19	320
Новая Каховка	450	820	19	320
Хмельницкая область				
Хмельницкий	500	1340	19	230
Каменец-Подольский	460	1270	19	210
Нетишин	520	1330	18	210
Славута	510	1350	18	210
Шепетовка	500	1370	19	210
Черкасская область				
Черкассы	420	1520	18	220
Ватутино	410	1420	19	210
Канев	410	1540	15	210
Золотоноша	410	1560	18	210
Смела	420	1480	18	210
Умань	440	1440	19	210
Черновицкая область				
Черновцы	500	1320	22	210
Черниговская область				
Чернигов	410	1720	16	160
Нежин	370	1690	15	180
Прилуки	370	1640	19	210

Приложение И (обязательное)

СХЕМЫ ВЕТРОВЫХ НАГРУЗОК И АЭРОДИНАМИЧЕСКИЕ КОЭФФИЦИЕНТЫ C_{aer}

Схема 1. Отдельно стоящие плоские сплошные конструкции

Вертикальные и отклоняющиеся от вертикальных не более чем на 15° поверхности.

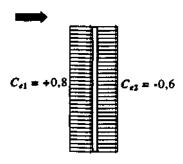
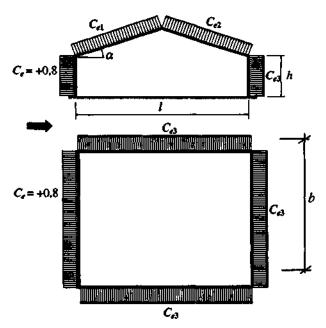
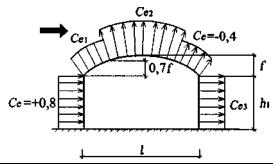



Схема 2. Здания с двускатными покрытиями

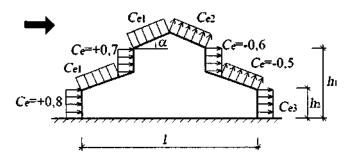


TC 1.1		Значения C_{e1} , C_{e2} при h_1/l , равном:						
Коэффициент	lpha , град	0	0,5	1	≥2			
	0	0	-0,6	-0,7	-0,8			
C	20	+0,2	-0,4	-0,7	-0,8			
C_{e1}	40	+0,4	+0,3	-0,2	-0,4			
	60	+0,8	+0,8	+0,8	+0,8			
C_{e2}	≤60	-0,4	-0,4	-0,5	-0,8			

	Зна	ичения C_{e3} при h_1/L , раві	ном:
b/l	≤0,5	1	≥2
≤1	-0,4	-0,5	-0,6
≥2	-0,5	-0,6	-0,6

Примечание. При ветре, перпендикулярном торцу здания, для всего покрытия $C_e = -0.7$.

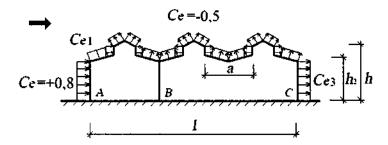
Схема 3. Здания со сводчатыми и близкими к ним по очертанию покрытиями



Коэффициент	1 /1	Значение C_{e1} , C_{e2} при f/l , равном:							
	h_1/l	0,1	0,2	0,3	0,4	0,5			
	0	+0,1	+0,2	+0,4	+0,6	+0,7			
C_{e1}	0,2	-0,2	-0,1	+0,2	+0,5	+0,7			
	≥1	-0,8	-0,7	-0,3	+0,3	+0,7			
C_{e2}	Произвольное	-0,8	-0,9	-1	-1,1	-1,2			

Значение C_{e3} принимается по схеме 2.

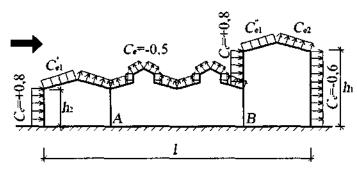
Примечание. При ветре, перпендикулярном торцу здания, для всего покрытия $C_e = -0.7$.


Схема 4. Здания с продольным фонарем

Коэффициенты C_{e1} , C_{e2} , C_{e3} следует определять в соответствии с указаниями к схеме 2.

Примечание. При расчете поперечных рам зданий с фонарем и ветроотбойными щитами значение суммарного коэффициента лобового сопротивления системы «фонарь-щиты» принимается равным 1,4

Схема 5. Здания с продольными фонарями

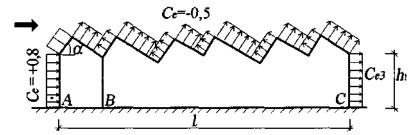


Для покрытия здания на участке AB коэффициенты C_e следует принимать по схеме 4.

Для фонарей участка BC при $\lambda \le 2$ $C_x=0,2$; при $2 \le \lambda \le 8$ для каждого фонаря $C_x=0,1\lambda$; при $\lambda > 8$ $C_x=0,8$, здесь $\lambda = a/(h_1-h_2)$. Для остальных участков покрытия $C_x=-0,5$.

Примечание. Для подветренной, заветренной и боковых стен зданий коэффициенты давления следует определять в соответствии с указаниями к схеме 2.

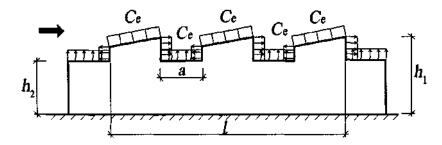
Схема 6. Здания с продольными фонарями различной высоты



Коэффициенты C'_{e1} , C''_{e1} , и C_{e2} следует определять в соответствии с указаниями к схеме 2, где при определении C_{e1} за h_1 необходимо принимать высоту наветренной стены здания.

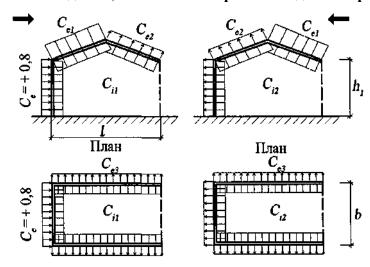
Для участка AB C_e следует определять так же, как для участка BC схемы 5, где за h_1 - h_2 необходимо принимать высоту фонаря.

Примечание. Для подветренной, заветренной и боковых стен зданий коэффициенты давления следует определять в соответствии с указаниями к схеме 2.


Схема 7. Здания с шедовыми покрытиями

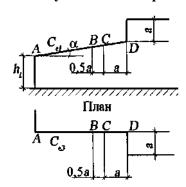
Для участка AB C_e следует определять в соответствии с указаниями к схеме 2. Для участка BC C_e = -0.5.

- 1. Силу трения необходимо учитывать при произвольном направлении ветра, при этом C = 0.04.
- 2. Для подветренной, заветренной и боковых стен зданий коэффициенты давления следует определять в соответствии с указаниями к схеме 2.


Схема 8. Здания с зенитными фонарями

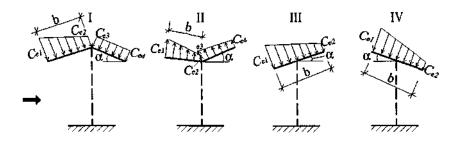
Для наветренного фонаря коэффициент C_e следует определять в соответствии с указаниями к схеме 2, для остальной части покрытия — как для участка BC схемы 5.

Примечание. Для подветренной, заветренной и боковых стен зданий коэффициенты давления следует определять в соответствии с указаниями к схеме 2.


Схема 9. Здания, постоянно открытые с одной стороны

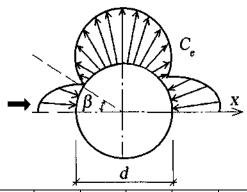
При $\mu \le 5\%$ $C_{i1} = C_{i2} = \pm 0.2$; при $\mu \ge 30\%$ C_{i1} следует принимать равным C_{i3} , определенным в соответствии с указаниями к схеме 2; $C_{i2} = +0.8$.

- 1. Коэффициенты C_e на внешней поверхности следует принимать в соответствии с указаниями к схеме 2.
- 2.Проницаемость ограждения μ следует определять как отношение суммарной площади имеющихся в нем проемов к полной площади ограждения. Для герметичного здания следует принимать C_i =0. В зданиях, указанных в 9.3в, характеристическое значение внутреннего давления на легкие перегородки (при их поверхностной плотности менее 100 кг/м²) следует принимать равным 0,2 w_0 , но не менее 0,1 кПа (10 кгс/м²).
- 3.Для каждой стены здания знак «плюс» или «минус» для коэффициента C_{i1} при $\mu \le 5\%$ следует определять исходя из условия реализации наиболее неблагоприятного варианта нагружения.


Схема 10. Уступы зданий при α <15°

Для участка CD C_e =0,7. Для участка BC C_e следует определять линейной интерполяцией значений, принимаемых в точках B и C. Коэффициенты C_{e1} и C_{e3} на участке AB следует принимать в соответствии с указаниями к схеме 2 (где b и l – размеры в плане всего здания).

Для вертикальных поверхностей коэффициент C_e необходимо определять в соответствии с указаниями к схемам 1 и 2.


Схема 11. Навесы

T			Значение ко	эффициентов	
Тип схемы	lpha, град	C_{e1}	C_{e2}	C_{e3}	C_{e4}
	10	+0,5	-1,3	-1,1	0
I	20	+1,1	0	0	-0,4
	30	+2,1	+0,9	+0,6	0
	10	0	-1,1	-1,5	0
II	20	+1,5	+0,5	0	0
	30	+2	+0,8	+0,4	+0,4
	10	+1,4	+0,4	-	-
III	20	+1,8	+0,5	-	-
	30	+2,2	+0,6	-	-
	10	+1,3	+0,2	-	-
IV	20	+1,4	+0,3	-	-
	30	+1,6	+0,4	-	-

- 1. Коэффициенты C_{e1} , C_{e2} , C_{e3} , C_{e4} следует относить к сумме давлений на верхнюю и нижнюю поверхности навесов. Для отрицательных значений C_{e1} , C_{e2} , C_{e3} , C_{e4} направление давления на схемах следует изменять на противоположное.
 - 2 Для навесов с волнистым покрытием $C_f = 0.04$

Схема 12а. Сфера

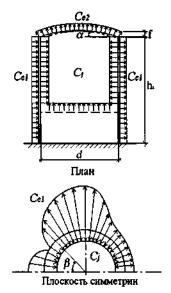
eta , град	0	15	30	45	60	75	90	105	120	135	150	175	180
C_e	+1,0	+0,8	+0,4	-0,2	-0,8	-1,2	-1,25	-1,0	-0,6	-0,2	+0,2	+0,3	+0,4

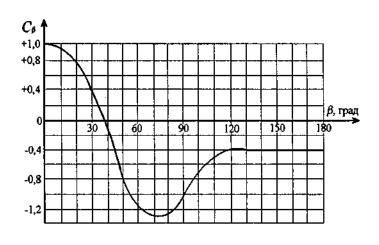
Число Рейнольдса $Re = 0.88 \sqrt{W_0 k(z) \gamma_f} \cdot 10^5$	C_e
$Re < 10^5$	1,3
$2x10^5 \le \text{Re} \le 3x10^5$	0,6
$Re < 4x10^5$	0,2

d - диаметр сферы, м;

 W_0 - определяется в соответствии с 9.6, Па;

 C_h - определяется в соответствии с 9.9;

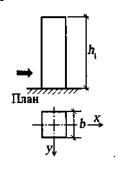

z - расстояние, м, от поверхности земли до центра сферы;


 $\gamma_{\it fm}$, $\gamma_{\it fe}\,$ — определяются в соответствии с 9.14, 9.15.

Примечание. Коэффициенты C_e приведены при Re>4 10^5 .

Схема 126. Сооружения с круговой цилиндрической поверхностью

$$C_{eta}(eta)$$
 при $\mathrm{Re} > 4 \cdot 10^5$
$$C_{e1} = kC_{eta}$$


,	0,2	0,5	1	2	5	10	25	
	C_{β} <0	0,8	0,9	0,95	1,0	1,1	1,15	1,2
k_1	C_{β} >0				1,0			

	Значение C_{e2} при h_1/d_1 равном				
Покрытие	1/6	1/3	≥1		
Плоское, коническое при α <5°, сферическое при $f/d \le 0,1$	-0,5	-0,6	-0,8		

h_1/d	1/6	1/4	1/2	1	2	≥5
C_i	-0,5	-0,55	-0,7	-0,8	-0,9	-1,05

- 1. Re следует определять по формуле к схеме 12 а, принимая $z = h_1$.
- 2. Коэффициент C_i следует учитывать при опущенном покрытии («плавающая кровля»), а также при отсутствии его.

Схема 13. Призматические сооружения

$$C_x = kC_{x\infty}$$
; $C_y = kC_{y\infty}$

Таблица 1

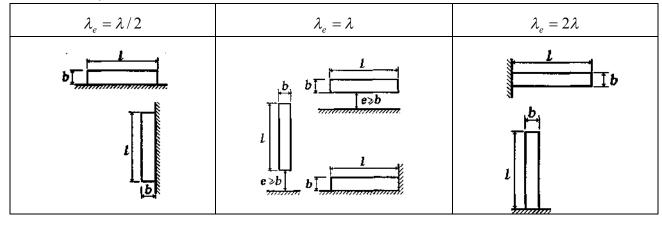
λ_e	5	10	20	35	50	100	8
k	0,6	0,65	0,75	0,85	0,9	0,95	1

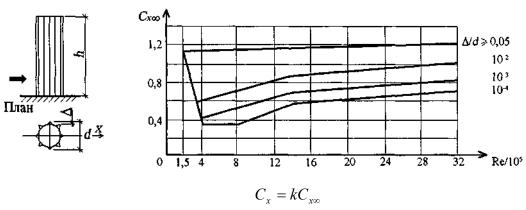
 λ_e необходимо определять по табл.2, где $\lambda = l/b$, а l и b- соответственно максимальный и минимальный размеры сооружения или его элемента в плоскости, перпендикулярной направлению ветра. Для стен с лоджиями при ветре, параллельном этим стенам, $C_f = 0.1$; для волнистых покрытий $C_f = 0.04$.

Для прямоугольных в плане зданий при l/b = 0,1...0,5 и $\beta = 40...50^{\circ}$ $C_{y\infty} = 0,75;$ равнодействующая ветровой нагрузки приложена в точке 0, при этом эксцентриситет e = 0,15b.

Число Рейнольдса Re следует определять по формуле к схеме 12a, принимая $z=h_1$, d — диаметр описанной окружности.

Таблица 2




Таблица 3

Эскизы сечен	ний и направлений ветра	eta , град.	l/f	$C_{x^{\infty}}$
	y,	0	≤1,5	2,1
Прямоугольник	$\beta \nearrow \bigcirc $	40-50	≥3	1,6
			≤0,2	2,0
			≥0,5	1,7
	\wedge		≤0,5	1,9
Ромб	→ \ X	0	1	1,6
			≥2	1,1
Правильный	β	0	-	2
треугольник		180	-	1,2

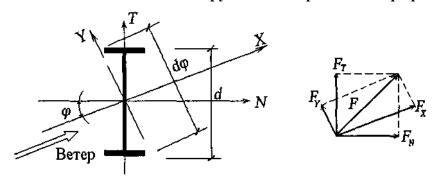
Таблица 4

тиолици т			
Эскизы сечений и направлений ветра	$oldsymbol{eta}$, град	<i>n</i> (число сторон)	$C_{x\infty}$ при Re>4·10 ⁵
Правильный многоугольник		5	1,8
β. Α	Пи оттак от туту	6-8	1,5
	Произвольный	10	1,2
1 4 1		12	1,0

Схема 14. Сооружения и их элементы с круговой цилиндрической поверхностью (резервуары, градирни, башни, дымовые трубы), провода и тросы, а также круглые трубчатые и сплошные элементы сквозных сооружений

k – определяется по табл.1 схемы 13;

 $C_{x\infty}$ — определяется по графику.

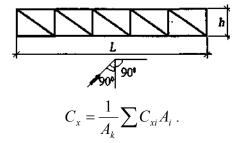

Примечания.

1. Re следует определять по формуле к схеме 12a, принимая z=h, d= диаметр сооружения. Значения Δ принимаются: для деревянных конструкций Δ =0,005 м; для кирпичной кладки Δ = 0,01 м; для бетонных и железобетонных конструкций Δ =0,005 м; для стальных конструкций Δ =0,001 м; для проводов и тросов диаметром d Δ = 0,01d; для ребристых поверхностей с ребрами высотой d d = d.

2.Для волнистых покрытий C_f =0,04.

3.Для проводов и тросов (в том числе и покрытых гололедом) C_x = 1,2. Для проводов и тросов d \geq 20 мм, свободных от гололеда, значение C_x допускается снижать на 10%.

Схема 15. Элементы сооружений из прокатных профилей

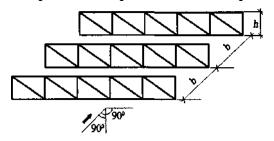

Результирующая сила F может быть представлена в двух вариантах:

как сумма компонентов F_x и F_y , направленных вдоль и поперек ветрового потока, для вычисления которых используются аэродинамические коэффициенты C_x и C_y ;

как сумма компонентов F_N и F_T , направленных вдоль характерных осей поперечного сечения, для вычисления которых используются аэродинамические коэффициенты C_T и C_N .

φ		$ \begin{array}{c} $			-	C_{T_1}	a C _N		$ \begin{array}{c c} C_T & t \\ \hline 0,5a & C_N \\ \hline a \end{array} $			
	C_x	C_y	C_T	C_N	C_x	C_y	C_T	C_N	C_x	C_y	C_T	C_N
0°	+1,49	0	+1,05	+1,05	+1,20	0	0	+1,20	+1,20	+0,60	+0,60	+1,20
45°	+1,08	-1,29	+1,08	+1,29	+1,02	-0,51	+0,36	+1,08	+1,10	+0,42	+0,48	+1,08
90°	+1,02	+0,42	+0,42	-1,02	+0,36	0	+0,36	0	+0,48	-1,20	+0,48	+1,20
135°	+1,14	-0,12	+0,12	-1,14	+0,85	+0,51	+0,24	-0,96	+1,00	+0,32	+0,48	-0,83
180°	+1,11	0	-0,78	-0,78	+1,08	0	0	-1,08	+1,20	-0,06	+0,06	-1,20
φ		C _T	C _N	· -	-	<u> </u>	C a	v.	C_{T} C_{N} $O,\overline{45a}$ C_{N}			N
	C_x	C_y	C_T	C_N	C_x	C_y	C_T	C_N	C_x	C_y	C_T	C_N
0°	+0,96	0	0	+0,96	+1,08	0	0	+1,08	+0,90	0	0	+0,90
45°	+1,42	+0,49	+1,35	+0,66	+0,76	0	+0,54	+0,54	+0,68	-0,55	+0,09	+0,87
90°	+1,29	-0,81	+1,29	+0,81	+1,08	0	+1,08	0	+0,55	+0,43	+0,55	-0,43
135°	+0,81	+0,21	+0,42	-0,72	+0,55	0	+0,39	-0,39	+0,55	-0,34	+0,63	-0,15
180°	+1,20	0	0	-1,20	+1,08	0	0	-1,08	+0,87	0	0	-0,87
φ		C _T				$C_T \uparrow$	T _{CN}	-	C_T C_N C_N			<u> </u>
	C_x	C_y	C_T	C_N	C_x	C_y	C_T	C_N	C_x	C_y	C_T	C_N
0°	+1,20	0	0	+1,20	+1,20	0	0	+1,20	+0,93	0	0	+0,93
45°	+0,81	-0,72	+0,06	+1,08	+1,02	-0,51	+0,36	+1,08	+1,31	-0,13	+0,84	+1,02
90°	+0,06	0	+0,06	0	+0,51	0	+0,51	0	+1,14	0	+1,14	0
φ	φ A			v		C _T 1	C_N					<u>-</u>
	C_x	C_y	C_T	C_N	C_x	C_y	C_T	C_N	C_x	C_y	C_T	C_N
0°	+1,14	0	0	+1,14	+1,26	0	0	+1,26	+0,75	0	0	+0,75
45°	+1,27	0	+0,90	+0,90	+0,89	-0,30	+0,42	+0,84	+1,23	-0,13	+0,78	+0,96
90°	+1,14	0	+1,14	0	+0,45	0	+0,45	0	+0,78	0	+0,78	0

Схема 16. Отдельно стоящие плоские решетчатые конструкции



Ветровую нагрузку следует относить к площади, ограниченной контуром конструкции A_{K} при этом предполагается, что сумма площадей A_{i} , являющихся проекциями i-х элементов на плоскость конструкции, удовлетворяет условию

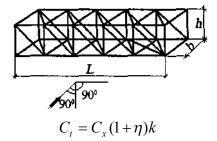
$$\varphi = \frac{\sum_{i} A_{i}}{A_{i}} \le 0.8 .$$

Аэродинамический коэффициент і-го элемента конструкций C_{xi} для профилей определяется по схеме 15, при этом допускается принимать $C_{xi}=1,4$, а для трубчатых элементов – по графику к схеме 14 при $\lambda_e = \lambda$ (см. табл. 2 схемы 13). Направление оси Xсовпадает с направлением ветра и перпендикулярно плоскости конструкции.

Схема 17. Ряд плоских параллельно расположенных решетчатых конструкций

Для подветренной конструкции коэффициент C_{x1} определяется так же, как для схемы 16; предполагается, что и в этой схеме $\varphi \le 0.8$.

Для второй и последующих конструкций $C_{x2} = C_{x1} \eta$

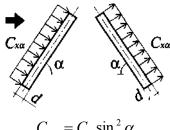

Для ферм из труб при $Re \ge 4 \cdot 10^5$ $\eta = 0.95$, при $Re < 4 \cdot 10^5$ η определяется по таблице:

φ	Значение η для ферм из профилей и труб при $\text{Re} < 4 \cdot 10^5$ и b/h , равном:									
Ψ	1/2	1	2	4	6					
0,1	0,93	0,99	1	1	1					
0,2	0,75	0,81	0,87	0,9	0,93					
0,3	0,56	0,65	0,73	0,78	0,83					
0,4	0,38	0,48	0,59	0,65	0,72					
0,5	0,19	0,32	0,44	0,52	0,61					
0,6	0	0,15	0,3	0,4	0,5					

Здесь h — минимальный размер контура; для прямоугольных и трапециевидных ферм h — длина наименьшей стороны контура; для круглых решетчатых конструкций h — их диаметр; для эллиптических и близких к ним по очертанию конструкций h – длина меньшей оси; b –расстояние между соседними фермами.

Re следует определять по формуле к схеме 12a, где d – средний диаметр трубчатых элементов; z — допускается принимать равным расстоянию от поверхности земли до верхнего пояса фермы. Коэффициент ϕ следует определять в соответствии с указаниями к схеме 16.

Схема 18. Решетчатые башни и пространственные фермы



Аэродинамический коэффициент C_t относится к площади контура подветренной грани, предполагается, что и в этой схеме $\phi \le 0.8$.

Коэффициент C_x определяется так же, как для схемы 16, а коэффициент η – как для схемы 17. Коэффициент k_1 определяется по таблице, приведенной ниже. При направлении ветра по диагонали четырехгранных квадратных в плане башен коэффициент k_1 для стальных башен из одиночных элементов следует уменьшать на 10%; для деревянных башен из составных элементов – увеличивать на 10%.

Эскизы форм контура поперечного сечения и направления ветра	k_1
→	1,0
→ <u> </u>	0,9
→ <	1,2

Схема 19. Ванты и наклонные трубчатые элементы, расположенные в плоскости

 $C_{x\alpha} = C_x \sin^2 \alpha$,

 C_x определяется в соответствии с указаниями к схеме 14.